Selective Antigen-Specific CD4+ T-Cell, But not CD8+ T- or B-Cell, Tolerance Corrupts Cancer Immunotherapy

Snook et al., Eur J Immunol. (2014) - PMID: 24771148

Product(s) used in this publication:  PepTrack™ Peptide Libraries


Self-tolerance, presumably through lineage-unbiased elimination of self-antigen-specific lymphocytes (CD4(+) T, CD8(+) T, and B cells), creates a formidable barrier to cancer immunotherapy. In contrast to this prevailing paradigm, we demonstrate that for some antigens, self-tolerance reflects selective elimination of antigen-specific CD4(+) T cells, but preservation of CD8(+) T- and B-cell populations. In mice, antigen-specific CD4(+) T-cell tolerance restricted CD8(+) T- and B-cell responses targeting the endogenous self-antigen guanylyl cyclase c (GUCY2C) in colorectal cancer. Although selective CD4(+) T-cell tolerance blocked GUCY2C-specific antitumor immunity and memory responses, it offered a unique solution to the inefficacy of GUCY2C vaccines through recruitment of self-antigen-independent CD4(+) T-cell help. Incorporating CD4(+) T-cell epitopes from foreign antigens into vaccines against GUCY2C reconstituted CD4(+) T-cell help, revealing the latent functional capacity of GUCY2C-specific CD8(+) T- and B-cell pools, producing durable antitumor immunity without autoimmunity. Incorporating CD4(+) T-cell epitopes from foreign antigens into vaccines targeting self-antigens in melanoma (Trp2) and breast cancer (Her2) produced similar results, suggesting selective CD4(+) T-cell tolerance underlies ineffective vaccination against many cancer antigens. Thus, identification of self-antigens characterized by selective CD4(+) T-cell tolerance and abrogation of such tolerance through self-antigen-independent T-cell help is essential for future immunotherapeutics.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Immunotherapy; T helper (Th) cells; Tolerance; Tumor immunology; Vaccination

Stay in touch and be the first to receive the latest news!