Pathogenic Nematodes Suppress Humoral Responses to Third-Party Antigens In Vivo by IL-10–Mediated Interference with Th Cell Function

Hartmann et al., J. Immunol. (2011) - PMID: 21900178

Product(s) used in this publication:  Specialty Peptides


One third of the human population is infected with helminth parasites. To promote their longevity and to limit pathology, helminths have developed several strategies to suppress the immune response of their host. As this immune suppression also acts on unrelated third-party Ags, a preexisting helminth infection may interfere with vaccination efficacy. In this study, we show that natural infection with Litomosoides sigmodontis suppressed the humoral response to thymus-dependent but not to thymus-independent model Ags in C57BL/6 mice. Thereby, we provide evidence that reduced humoral responses were mediated by interference with Th cell function rather than by direct suppression of B cells in L. sigmodontis-infected mice. We directly demonstrate suppression of Ag-specific proliferation in OVA-specific Th cells after adoptive transfer into L. sigmodontis-infected mice that led to equally reduced production of OVA-specific IgG. Transferred Th cells displayed increased frequencies of Foxp3(+) after in vivo stimulation within infected but not within naive mice. Helminth-mediated suppression was induced by established L. sigmodontis infections but was completely independent of the individual worm burden. Using DEREG mice, we rule out a central role for host-derived regulatory T cells in the suppression of transferred Th cell proliferation. In contrast, we show that L. sigmodontis-induced, host-derived IL-10 mediated Foxp3 induction in transferred Th cells and significantly contributed to the observed Th cell hypoproliferation within infected mice.

Stay in touch and be the first to receive the latest news!