Multiple-Enzyme-Digestion Strategy Improves Accuracy and Sensitivity of Label- and Standard-Free Absolute Quantification to a Level That Is Achievable by Analysis with Stable Isotope-Labeled Standard Spiking

JR Wiśniewski et al., Journal of Proteome Research (2018) - PMID: 30336047

Product(s) used in this publication:  Reference Peptides for Targeted Proteomics - SpikeTides™ & SpikeMix™


Quantification of individual proteins is an essential task in understanding biological processes. For example, determination of concentrations of proteins transporting and metabolizing xenobiotics is a prerequisite for drug disposition predictions in humans based on in vitro data. So far, this task has frequently been accomplished by targeted proteomics. This type of analyses requires preparation of stable isotope labeled standards for each protein of interest. The selection of appropriate standard peptides is usually tedious and the number of proteins that can be studied in a single experiment by these approaches is limited. In addition, incomplete digestion of proteins often affects the accuracy of the quantification. To circumvent these constrains in proteomic protein quantification, label- and standard-free approaches, such as "total protein approach" (TPA) have been proposed. Here we directly compare an approach using stable isotope labeled (SIL) standards and TPA for quantification of transporters and enzymes in human liver samples within the same LC-MS/MS runs. We show that TPA is a convenient alternative to SIL-based methods. Optimization of the sample preparation beyond commonly used single tryptic digestion, by adding consecutive cleavage steps, improves accuracy and reproducibility of the TPA method to a level, which is achievable by analysis using stable isotope-labeled standard spiking.

Stay in touch and be the first to receive the latest news!