Contact

T Cells Specific for Different Latent and Lytic Viral Proteins Efficiently Control Epstein-Barr Virus–Transformed B Cells

Nowakowska et al., Cytotherapy (2015) - PMID: 26276009

Product(s) used in this publication: PepMix™ Peptide Pools

Abstract:

BACKGROUND AIMS:

Epstein-Barr virus (EBV)-associated post-transplant lymphoproliferative disorders (PTLD) belong to the most dreaded complications of immunosuppression. The efficacy of EBV-specific T-cell transfer for PTLD has been previously shown, yet the optimal choice of EBV-derived antigens inducing polyclonal CD4(+) and CD8(+) T cells that cover a wide range of human leukocyte antigen types and efficiently control PTLD remains unclear.

METHODS:

A pool of 125 T-cell epitopes from seven latent and nine lytic EBV-derived proteins (EBVmix) and peptide pools of EBNA1, EBNA3c, LMP2a and BZLF1 were used to determine T-cell frequencies and to isolate T cells through the use of the interferon (IFN)-γ cytokine capture system. We further evaluated the phenotype and functionality of the generated T-cell lines in vitro.

RESULTS:

EBVmix induced significantly higher T-cell frequencies and allowed selecting more CD4(+)IFN-γ(+) and CD8(+)IFN-γ(+) cells than single peptide pools. T cells of all specificities expanded similarly in vitro, recognized cognate antigen, and, to a lower extent, EBV-infected cells, exerted moderate cytotoxicity and showed reduced alloreactivity. However, EBVmix-specific cells most efficiently controlled EBV-infected lymphoblastoid cell lines (LCLs). This control was mainly mediated by EBV-specific CD8(+) cells with an oligoclonal epitope signature covering both latent and lytic viral proteins. Notably, EBV-specific CD4(+) cells unable to control LCLs produced significantly less perforin and granzyme B, probably because of limited LCL epitope presentation.

CONCLUSIONS:

EBVmix induces a broader T-cell response, probably because of its coverage of latent and lytic EBV-derived proteins that may be important to control EBV-transformed B cells and might offer an improvement of T-cell therapies.

Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

KEYWORDS:

Epstein-Barr virus; IFN-γ selection; PTLD; T-cell transfer; immunotherapy

Stay in touch and be the first to receive the latest news!