Strategy for Identification of CD8 T-cell Epitopes in a Viral Protein

R. Holtappels
Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Germany

Knowledge of the antigenicity repertoire of a pathogen is a prerequisite for the development of antimicrobial interventions. Thus, identification of the CD8 T-cell immunome of murine cytomegalovirus (mCMV) was key to the establishment of cytoimmunotherapeutic approaches in infected hosts. CD8 T-cell epitopes can be identified by searching for MHC class-I binding motifs. This approach fails when the amino acid (aa) sequence of the antigenic peptide does not fit to these motifs. This limitation can be circumvented using a library of overlapping peptides covering the complete aa sequence of the antigen. Here we describe the application of a PepTrack™ peptide library for the identification of a CD8 T-cell epitope in a viral protein.

Introduction
Immune control of mCMV infection is dominated by CD8 T cells. The first CD8 T-cell epitope of mCMV was described already in 1989 (1). A breakthrough in the identification of further CD8 T-cell epitopes was the discovery of Rammensee’s group in that MHC-bound peptides display defined binding motifs (2). Based on these motifs we identified 8 further CD8 T-cell epitopes of mCMV in haplotype H-2d (3). Screening of an mCMV-open reading frame (ORF) library indicated that there exists at least another antigenic peptide in the viral protein M54.

A first attempt to identify the M54 encoded CD8 T-cell epitope(s) we used computational algorithms which are based on MHC class-I binding motifs, a strategy we have already applied successfully. Peptides with the highest scores were synthesized and used to stimulate CD8 T cells from mCMV-infected BALB/c mice in an ELISPOT assay. This approach failed as no significant numbers of CD8 T cells could be activated by the predicted peptides.

Therefore, we performed a M54-protein screen using a PepTrack™ Fast Track micro-scale peptide library consisting of overlapping decamers. Stimulating CD8 T cells from infected mice with this library resulted in the identification of 3 antigenic decamers. The exact CD8 T-cell epitope was identified by an Alanine (Ala)-walk through the candidate peptides, followed by confirmation with purified synthetic peptides.

Materials & Methods

M54-peptide library. A PepTrack™ Fast Track micro-scale peptide library covering the complete aa-sequence of the mCMV-protein M54 was synthesized by JPT Peptide Technologies, Berlin (Germany). The library consisted of 549 unpurified 10-mer peptides, each with an amine at the N-terminus and an individual aa at the C-terminus. Peptides were delivered freeze-dried (50-100nmol each). Lyophilisates were resolved in 5µl DMSO 100% and in generation of cytotoxic T-cell lines. Therefore we decided to apply a peptide library covering the complete aa-sequence of the M54 protein, consisting of 10-mers with an offset of 2 aa (figure 2A).

Stimulation of CD8 T cells with the peptide libraries.

CD8 T cells from spleens of mCMV-infected BALB/c mice were immunomagnetically enriched using anti-CD8 MicroBeads (Miltenyi Biotec). PB15 cells were used as antigen presenting cells (APC) exogenously loaded with the synthetic peptides of the libraries for 1h at room temperature. IFNγ secretion of activated CD8 T cells was monitored in an IFNγ-based ELISPOT assay.

Results

Screening the MCMV-specific CD8 T-cell immunome in mouse haplotype H2d indicated ORF M54 to code for at least one CD8 T-cell epitope. To identify the corresponding peptide(s) we applied different bioinformatic algorithms (e.g. SYFPEITHI (5), RANKPEP (6)). The top scoring peptides were synthesized but failed in stimulating a sufficient number of CD8 T cells in the ELISPOT assay and in generation of cytotoxic T-cell lines. Therefore we decided to apply a peptide library covering the complete aa-sequence of the M54 protein, consisting of 10-mers with an offset of 2 aa (figure 2A).

Stimulation of ex vivo isolated CD8 T cells from mCMV-infected BALB/c mice with the M54- peptide library resulted in 3 candidate peptides activating a significant number of CD8 T cells, (figure 1B). Two of them were consecutive peptides with an overlap of 8 aa making it highly probable that one antigenic peptide covered by the 12-mer stimulated the CD8 T cells. Bioinformatic search for MHC class-I Ld, Dd or Kk peptides with high
MHC-I binding scores resulted in three 9-mers as candidate peptides encoded by the 12-mer M54_82-90 and two 9-mers encoded by the 10-mer M54_83-92. These peptides were synthesized (JPT, purity >80%) and used for stimulation of CD8 T cells from mCMV-infected mice in an IFNγ-based ELISPOT assay. Peptides M54_82-90 and M54_83-92 proved to be CD8 T-cell epitopes with comparable antigenicity.

To identify the minimal epitope, the antigenic 12-mer M54_81-92 and all possible 11-, 10- and 9-mers derived thereof were synthesized. In addition, an Ala-walk through all of these peptides was performed (figure 2A). Stimulation of CD8 T cells from mCMV-infected mice with this library resulted in recognition patterns, exemplified for the unmodified peptides and the Ala-walk through the 12-mer (figure 2B). This screening revealed the 10-mer M54_83-92 as the peptide with the highest antigenicity. The Ala-walk further disclosed the impact of every single aa for the antigenicity of the peptide (figure 2C), a strategy which was already successfully applied for the first CD8 T-cell epitope of mCMV described (4).

Nevertheless, these predictions may fail and PepTrack™ Fast Track peptide libraries are useful and cost-efficient tools for antigenicity screening of the complete aa-sequence of a given protein or polypeptide, in particular if the presenting MHC class-I molecule is unknown. Peptide length as well as the overlap of 2 consecutive peptides depend on different factors, taking into account also the potential presenting MHC molecules. Using libraries of peptides with appropriate length (8-11 aa for MHC class I presented peptides) and an offset of 1-2 aa minimizes the probability to miss an epitope. This saves time in particular as the probability to identify the epitope using bioinformatic algorithms is significantly lower.

References
2. MHC ligands and peptide motifs. Rammensee et al., Springer Verlag (1997)